lunes, 11 de mayo de 2015

Energía Cinética

En física, la energía cinética de un cuerpo es aquella energía que posee debido a su movimiento. Se define como el trabajo necesario para acelerar un cuerpo de una masa determinada desde el reposo hasta la velocidad indicada. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su velocidad. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética. Suele abreviarse con letra Ec o Ek (a veces también T o K).
Los carros de una montaña rusa alcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienza a ser convertida a energía potencial gravitacional, pero, si se asume una fricción insignificante y otros factores de retardo, la cantidad total de energía en el sistema sigue siendo constante.

Energia potencial

En un sistema físico, la energía potencial es la energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra \scriptstyle U o \scriptstyle E_p.
La energía potencial puede presentarse como energía potencial gravitatoria, energía potencial electrostática, y #energía potencial elástica.
Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.
Los carros de una montaña rusa alcanzan su máxima energía potencial gravitacional en la parte más alta del recorrido. Al descender, ésta es convertida en energía cinética, la que llega a ser máxima en el fondo de la trayectoria (y la energía potencial mínima). Luego, al volver a elevarse debido a la inercia del movimiento, el traspaso de energías se invierte. Si se asume una fricción insignificante, la energía total del sistema permanece constante.
 
 

Energía potencial asociada a campos de fuerza

La energía potencial puede definirse solamente cuando la fuerza es conservativa. Si las fuerzas que actúan sobre un cuerpo son no conservativas, entonces no se puede definir la energía potencial, como se verá a continuación. Una fuerza es conservativa cuando se cumple alguna de las siguientes propiedades:
  • El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
  • El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
  • Cuando el rotacional de la fuerza es cero.
Se puede demostrar que todas las propiedades son equivalentes (es decir, que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial se define como:
U_B - U_A = -\int_A^B \mathbf{F} \cdot d\mathbf{r} .
Si las fuerzas no son conservativas no existirá en general una manera unívoca de definir la anterior integral. De la propiedad anterior se sigue que si la energía potencial es conocida, se puede obtener la fuerza a partir del gradiente de U:
 \mathbf{F} = - \nabla U .
También puede recorrerse el camino inverso: suponer la existencia una función energía potencial y definir la fuerza correspondiente mediante la fórmula anterior. Se puede demostrar que toda fuerza así definida es conservativa.
La forma funcional de la energía potencial depende de la fuerza de que se trate; así, para el campo gravitatorio (o eléctrico), el resultado del producto de las masas (o cargas) por una constante dividido por la distancia entre las masas (cargas), por lo que va disminuyendo a medida que se incrementa dicha distancia.

Potencia

 

En física, potencia (símbolo P) es la cantidad de trabajo efectuado por unidad de tiempo.
Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:
\bar{P} \equiv \left\langle P\right\rangle = \frac{\ W}{\Delta t}
La potencia instantánea es el valor límite de la potencia media cuando el intervalo de tiempo Δt se aproxima a cero. En el caso de un cuerpo de pequeñas dimensiones:
P(t) = \lim_{\Delta t\rightarrow 0} \frac{\ W}{\Delta t}\ =
\lim_{\Delta t\rightarrow 0} \mathbf{F}\cdot\frac{\Delta\mathbf{r}}{\Delta t} =
\mathbf{F}\cdot \mathbf{v}
Donde
P es la potencia,
W es el trabajo,
t es el tiempo.
r es el vector de posición.
F es la fuerza.
v es la velocidad.
 

Tipos de potencia

Potencia mecánica

La potencia mecánica aplicada sobre un sólido rígido viene dado por el producto de la fuerza resultante aplicada por la velocidad:
P(t) = \mathbf{F}\cdot \mathbf{v}
Si además existe rotación del sólido y las fuerzas aplicadas están cambiando su velocidad angular:
P(t) = \mathbf{F}\cdot \mathbf{v} + \mathbf{M}\cdot \boldsymbol{\omega}
donde:
\mathbf{F}, \mathbf{M}, son la fuerza resultante y el momento resultante.
\mathbf{v}, \boldsymbol{\omega}, son la velocidad del punto donde se ha calculado la resultante efectiva y la velocidad angular del sólido.
Para un sólido deformable o un medio continuo general la expresión es más compleja y se expresa como producto del tensor tensión y el campo de velocidades. la variación de energía cinética viene dada por:
P = \frac{\mathrm{d}}{\mathrm{d}t} \int_V \frac{\rho}{2}\|\mathbf{v}\|^2\ \mathrm{d}V
+ \int_V \sum_{ij} T_{ij}D_{ij}\ \mathrm{d}V
donde:
T_{ij}, son las componentes del tensor de tensiones de Cauchy.
D_{ij}, son las componentes del tensor de velocidad de deformación.

Potencia eléctrica

La potencia eléctrica P desarrollada en un cierto instante por un dispositivo viene dada por la expresión
P(t) = I(t)V(t) \,
Donde:
P(t) es la potencia instantánea, medida en vatios (julios/segundos).
I(t) es la corriente que circula por él, medida en amperios.
V(t) es la diferencia de potencial (caída de voltaje) a través del componente, medida en voltios.
Si el componente es una resistencia, tenemos:
P=I^2 R = \frac{V^2}{R}
Donde:
R es la resistencia, medida en ohmios.

Potencia sonora

La potencia del sonido, considerada como la cantidad de energía que transporta la onda sonora por unidad de tiempo a través de una superficie dada, depende de la intensidad de la onda sonora y de la superficie , viniendo dada, en el caso general, por:
P_S=\int_S I_s\ dS
  • Ps es la potencia
  • Is es la intensidad sonora.
  • dS es el elemento de superficie sobre alcanzado por la onda sonora.
Para una fuente aislada, el cálculo de la potencia sonora total emitida requiere que la integral anterior se extienda sobre una superficie cerrada. 

Trabajo

En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo de manera acelerada. El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

El trabajo en mecánica

Trabajo de una fuerza.
Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r) y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = 
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.

El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
Esto es, el trabajo viene dado por la integral curvilínea de \mathbf F a lo largo de la curva C que une los dos puntos; en otras palabras, por la circulación de \mathbf F sobre la curva C entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf F sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.

Casos particulares

Fuerza constante sobre una partícula
En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección y sentido), se tiene que
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r =
\mathbf F \cdot \int_{\text{A}}^{\text{B}} \mathrm d \mathbf r =\mathbf F \cdot \Delta \mathbf r =
F s \cos \theta
es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final. Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.
Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces  \mathbf F representará al vector resultante de todas las fuerzas aplicadas.
Trabajo sobre un sólido rígido
Para el caso de un sólido el trabajo total sobre el mismo se calcula sumando las contribuciones sobre todas las partículas. Matemáticamente ese trabajo puede expresarse como integral:
W = \int_V  \mathrm{d}V \int_{T_0}^{T_f} \mathbf{f}_V(\mathbf{x})\cdot \mathbf{v}(\mathbf{x}) \mathrm{d}t
Si se trata de un sólido rígido las fuerzas de volumen \scriptstyle \mathbf{f}_V puede escribirse en términos de la fuerza resultante \scriptstyle \mathbf{F}_R, el momento resultante \scriptstyle \mathbf{M}_R, la velocidad del centro de masas \scriptstyle \mathbf{V}_{CM} y la velocidad angular \scriptstyle \boldsymbol{\omega}:
W = \int_{T_0}^{T_f} \left( \mathbf{F}_R \cdot \mathbf{v}_{CM} +
\mathbf{M}_R\cdot \boldsymbol{\omega} \right)\mathrm{d}t

Trabajo y energía cinética

Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es válida la siguiente expresión:
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}
Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la variación de energía cinética:
W = \int \mathbf{F}\cdot\mathbf{v} \mathrm{d}t
= \int \mathbf{F}\cdot \mathrm{d}\mathbf{r}
= \int \mathbf{v}\cdot\mathrm{d}\mathbf{p} =  \Delta E_c

El trabajo en termodinámica

En el caso de un sistema termodinámico, el trabajo no es necesariamente de naturaleza puramente mecánica, ya que la energía intercambiada en las interacciones puede ser también calorífica, eléctrica, magnética o química, por lo que no siempre podrá expresarse en la forma de trabajo mecánico.
No obstante, existe una situación particularmente simple e importante en la que el trabajo está asociado a los cambios de volumen que experimenta un sistema (v.g., un fluido contenido en un recinto de forma variable).
Así, si consideramos un fluido que se encuentra sometido a una presión externa p_{\text{ext}}\, y que evoluciona desde un estado caracterizado por un volumen V_1 a otro con un volumen V_2, el trabajo realizado será:
W_{12} = \int_{V_1}^{V_2} p_{\text{ext}} \mathrm d V
resultando un trabajo positivo (W > 0) si se trata de una expansión del sistema \mathrm d V > 0 y negativo en caso contrario, de acuerdo con el convenio de signos aceptado en la Termodinámica. En un proceso cuasiestático y sin fricción la presión exterior (p_{\text{ext}}) será igual en cada instante a la presión (p) del fluido, de modo que el trabajo intercambiado por el sistema en estos procesos se expresa como
W_{12} = \int_{V_1}^{V_2} p \, \mathrm d V
De estas expresiones se infiere que la presión se comporta como una fuerza generalizada, en tanto que el volumen actúa como un desplazamiento generalizado; la presión y el volumen constituyen una pareja de variables conjugadas.
En el caso que la presión del sistema permanezca constante durante el proceso, el trabajo viene dado por:
W = \int_{V_1}^{V_2} p \mathrm d V = p \int_{V_1}^{V_2} \mathrm d V = p ( V_2 - V_1 ) = p \Delta V