domingo, 29 de noviembre de 2015

energia interna y maquinas termicas

Energía interna

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:
  • la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema,
  • la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.[1]
La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.


Todo cuerpo posee una energía acumulada en su interior equivalente a la energía cinética interna más la energía potencial interna.
Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomos que constituyen el sistema (de sus energías de traslación, rotación y vibración) y de la energía potencial intermolecular (debida a las fuerzas intermoleculares) e intramolecular de la energía de enlace.
  • En un gas ideal monoatómico bastará con considerar la energía cinética de traslación de sus átomos.
  • En un gas ideal poliatómico, deberemos considerar además la energía vibracional y rotacional de las mismas.
  • En un líquido o sólido deberemos añadir la energía potencial que representa las interacciones moleculares.
Desde el punto de vista de la termodinámica, en un sistema cerrado (o sea, de paredes impermeables), la variación total de energía interna es igual a la suma de las cantidades de energía comunicadas al sistema en forma de calor y de trabajo  \Delta U = Q - W(En termodinámica se considera el trabajo negativo cuando este entra en el sistema termodinámico, positivo cuando sale). Aunque el calor transmitido depende del proceso en cuestión, la variación de energía interna es independiente del proceso, sólo depende del estado inicial y final, por lo que se dice que es una función de estado. Del mismo modo dU es una diferencial exacta, a diferencia de \eth Q, que depende del proceso.

Máquina térmica   

Rotor de la turbina de vapor.
Rotores de un compresor de doble tornillo, un tipo de compresor volumétrico rotativo.
Compresor rotodinámico axial.
Compresor rotodinámico centrífugo y su triángulo de velocidades a la salida.
Una máquina térmica es un conjunto de elementos mecánicos que permite intercambiar energía, generalmente a través de un eje, mediante la variación de energía de un fluido que varía su densidad significativamente al atravesar la máquina. Se trata de una máquina de fluido en la que varía el volumen específico del fluido en tal magnitud que los efectos mecánicos y los efectos térmicos son interdependientes.
Por el contrario, en una máquina hidráulica, que es otro tipo de máquina de fluido, la variación de densidad es suficientemente pequeña como para poder desacoplar el análisis de los efectos mecánicos y el análisis de los efectos térmicos, llegando a despreciar los efectos térmicos en gran parte de los casos. Tal es el caso de una bomba hidráulica, a través de la cual pasa líquido. Alejándose de lo que indica la etimología de la palabra «hidráulica», también puede considerarse como máquina hidráulica un ventilador, pues, aunque el aire es un fluido compresible, la variación de volumen específico no es muy significativa con el propósito de que no se desprenda la capa límite.
En una máquina térmica, la compresibilidad del fluido no es despreciable y es necesario considerar su influencia en la transformación de energía.

cambios de estado y equilibrio terminco

CAMBIOS DE ESTADO.
Paso de una sustancia de un estado a otro. Los más importantes son:
a) la evaporación
b) la condensación
c) la solidificación
d) la fusión
e) la vaporización
f) la sublimación
En un cambio de estado el cuerpo absorbe o desprende una determinada cantidad de calor por unidad de masa, denominado calor latente (de fusión, de ebullición, etc.), y durante el mismo la temperatura permanece invariable y constante para una presión externa dada.
Evaporación.
Paso de una sustancia del estado líquido al de vapor, a una temperatura inferior a la de ebullición. Tiene lugar sólo en la superficie del líquido y se produce de forma gradual.
Condensación.
Paso de una sustancia de la fase de vapor a la líquida (o la sólida); el proceso inverso es la vaporización (o la sublimación).
Solidificación.
Paso de un cuerpo del estado líquido al sólido; es el fenómeno inverso de la fusión. Para cada cuerpo tiene lugar a una temperatura determinada -punto de solidificación o de fusión- con desprendimiento de calor y, generalmente, acompañada de una disminución del volumen.
Fusión.
Paso de un cuerpo del estado sólido al líquido. Se verifica con absorción de calor, generalmente con aumento de volumen, y a una temperatura constante que depende de la naturaleza de los cuerpos y de la presión externa.
Vaporización.
Paso de una sustancia del estado líquido al gaseoso. Puede ser evaporación o ebullición según afecte sólo a la superficie o a todo el volumen. El calor de vapor es la cantidad de vapor que absorbe la unidad de masa de una sustancia al vaporizarse a una temperatura dada.
Sublimación.
Paso de un cuerpo directamente del estado sólido al de vapor o del de vapor al sólido; este último se llama también condensación. La transición sólido-vapor se produce cuando el sólido está sometido a una presión inferior a su presión de vapor, por lo que en muchos casos la cantidad de vapor en equilibrio con la fase sólida es mínima. Se llama calor de sublimación al absorbido (o desprendido) por la unidad de masa de una sustancia al sublimar.
Estado metastable.
El de un sólido, líquido o gas que permanece en un determinado estado de agregación en unas condiciones en que debería haberse producido un cambio de agregación.
La experiencia empírica indica que los cuerpos materiales adoptan diversas formas según el valor que toman las variables termodinámicas que los caracterizan.
El estado sólido se reconoce por la invariabilidad de forma y volumen; el estado líquido presenta sólo invariancia de volumen y el estado gaseoso carece de ambas. Para una misma sustancia y a presión constante, los estados sólido, líquido y gaseoso corresponden a valores crecientes de la temperatura. A temperaturas bajas, la energía cinética de las moléculas es insuficiente para superar las fuerzas de cohesión que tienden a mantenerlas unidas. Se tienen entonces los sólidos cristalinos. En éstos los movimientos de las moléculas se limitan a vibraciones en torno a determinados puntos que corresponden a los nudos de la red cristalina.
En el otro extremo del espectro, para valores muy superiores de la temperatura, la energía potencial intermolecular es prácticamente despreciable frente a la agitación molecular. El correspondiente estado de agregación es el gaseoso.
El estado intermedio corresponde a los líquidos y al estado amorfo: aunque pequeña, la velocidad de las moléculas es lo suficiente para que éstas no puedan formar un retículo cristalino.
Aumentando todavía la temperatura a partir del estado gaseoso, se llega a un punto en el que las moléculas se han disociado en sus átomos constituyentes y éstos a su vez han desaparecido para dar lugar a núcleos y electrones separados: este nuevo estado, característico de la materia estelar, se conoce con el nombre de plasma
'Cambios de estado'

La termodinámica

 proporciona una descripción macroscópica de los sistemas que estudia, sin hacer hipótesis acerca de la estructura microscópica de esos sistemas. Sin embargo, existen otras disciplinas, como la física estadística, que estudian los mismos fenómenos de la Termodinámica, pero desde un enfoque microscópico.
En particular, el concepto de equilibrio térmico está ligado al concepto de temperatura al decir que dos sistemas en equilibrio térmico tienen la misma temperatura. Desde un punto de vista microscópico, la temperatura está asociada a la energía cinética promedio que tienen las partículas que constituyen el sistema, a saber, átomos, moléculas y/o la estructura electrónica de la sustancia que constituye el sistema. Macroscópicamente, esta energía cinética promedio de las partículas de un sistema es lo que en la Termodinámica se llama energía interna, que es una energía que depende casi exclusivamente de la temperatura del sistema. A mayor energía cinética promedio de las partículas que constituyen un sistema, mayor energía interna y, en general, mayor temperatura del sistema.
La situación de dos sistemas en contacto térmico se interpreta microscópicamente como que las partículas de la superficie de interfase de ambos sistemas son capaces de interactuar entre sí. Básicamente se puede ver que, microscópicamente, las partículas del sistema de mayor temperatura (que tienen mayor energía cinética) van a transferir parte de su energía a las partículas del otro sistema. Se encuentra que esta interacción entre los dos sistemas da lugar a que las partículas de los dos sistemas alcancen la misma energía cinética promedio y, por lo tanto, la misma temperatura. Es decir, desde un punto de vista microscópico, se entiende como equilibrio térmico entre dos sistemas que las partículas de los dos sistemas tengan la misma energía cinética promedio.
Desde un punto de vista macroscópico, se dice que los sistemas un estado de equilibrio, bajo las condiciones indicadas en la sección definición termodinámica del equilibrio térmico. En cambio, desde un punto de vista microscópico, el estado de equilibrio se refiere al promedio, ya que los dos sistemas continúan intercambiando energía incluso una vez alcanzado el equilibrio térmico. Sin embargo, la energía cinética individual de una partícula no es estacionaria, sino que es el promedio de la distribución de energías de todas las partículas del sistema lo que no cambia en el tiempo.
De igual manera que para el caso macroscópico, se puede extender el concepto de equilibrio térmico a un único sistema donde, en esa situación de equilibrio, las partículas de dos partes cualesquiera del sistema tienen la misma energía cinética promedio.

Ley Cero de la Termodinámica

El concepto de equilibrio térmico es la base de la llamada Ley Cero de la Termodinámica. Esta ley proposición fue enunciada por R. H. Fowler en 1931. La ley cero de la termodinámica se enuncia diciendo:
La experiencia indica que si dos sistemas A y B se encuentran, cada uno por separado, en equilibrio térmico con un tercer sistema, que llamaremos C, entonces A y B se encuentran en equilibrio térmico entre sí.

Aplicación del concepto de equilibrio térmico: Termometría



Termómetro: dispositivo capaz de medir su propia temperatura. Su aplicación está basada en el concepto de equilibrio térmico.
Para saber la temperatura de una sustancia o cuerpo, se utiliza un dispositivo que permite determinar su propia temperatura. Tal dispositivo se denomina termómetro. Para determinar la temperatura de un cuerpo, se pone un termómetro en contacto térmico con él hasta que ambos alcanzan el equilibrio térmico. Sabemos que en el equilibrio térmico tanto el cuerpo como el termómetro se encuentran a la misma temperatura. Por tanto, la temperatura que indique el termómetro será también la temperatura del cuerpo en cuestión. Se recalca que, lo que un termómetro indica es su propia temperatura, por esto es importante conocer el concepto de equilibrio térmico.

procesos termodinamicos y trasnmision de calor

Tipos de procesos termodinámicos

Procesos Iso

Son los procesos cuyas magnitudes permanecen "constantes", es decir que el sistema cambia manteniendo cierta proporcionalidad en su transformación. Se les asigna el prefijo iso-.
Ejemplo:

Procesos politrópicos

Los procesos politrópicos son aquellos procesos termodinámicos para gases ideales que cumplen con la ecuación: PV^a = \text {cte.} donde a es un número dado. Para el caso de procesos adiabáticos, a es igual a k, el cual es un valor específico para cada sustancia. Este valor se puede encontrar en tablas para dicho caso.

Transferencia de calor:
en física, proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.
 El calor puede transferirse de tres formas: por conducción, por convección y por radiación. La conducción es la transferencia de calor a través de un objeto sólido: es lo que hace que el asa de un atizador se caliente aunque sólo la punta esté en el fuego. La convección transfiere calor por el intercambio de moléculas frías y calientes: es la causa de que el agua de una tetera se caliente uniformemente aunque sólo su parte inferior esté en contacto con la llama. La radiación es la transferencia de calor por radiación electromagnética (generalmente infrarroja): es el principal mecanismo por el que un fuego calienta la habitación.
En los sólidos, la única forma de transferencia de calor es la conducción. Si se calienta un extremo de una varilla metálica, de forma que aumente su temperatura, el calor se transmite hasta el extremo más frío por conducción. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los sólidos, pero se cree que se debe, en parte, al movimiento de los electrones libres que transportan energía cuando existe una diferencia de temperatura. Esta teoría explica por qué los buenos conductores eléctricos también tienden a ser buenos conductores del calor. En 1822, el matemático francés Joseph Fourier dio una expresión matemática precisa que hoy se conoce como ley de Fourier de la conducción del calor. Esta ley afirma que la velocidad de conducción de calor a través de un cuerpo por unidad de sección transversal es proporcional al gradiente de temperatura que existe en el cuerpo (con el signo cambiado).
El factor de proporcionalidad se denomina conductividad térmica del material. Los materiales como el oro, la plata o el cobre tienen conductividades térmicas elevadas y conducen bien el calor, mientras que materiales como el vidrio o el amianto tienen conductividades cientos e incluso miles de veces menores; conducen muy mal el calor, y se conocen como aislantes. En ingeniería resulta necesario conocer la velocidad de conducción del calor a través de un sólido en el que existe una diferencia de temperatura conocida. Para averiguarlo se requieren técnicas matemáticas muy complejas, sobre todo si el proceso varía con el tiempo; en este caso, se habla de conducción térmica transitoria. Con la ayuda de ordenadores (computadoras) analógicos y digitales, estos problemas pueden resolverse en la actualidad incluso para cuerpos de geometría complicada.
Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra por un proceso llamado convección. El movimiento del fluido puede ser natural o forzado. Si se calienta un líquido o un gas, su densidad (masa por unidad de volumen) suele disminuir. Si el líquido o gas se encuentra en el campo gravitatorio, el fluido más caliente y menos denso asciende, mientras que el fluido más frío y más denso desciende. Este tipo de movimiento, debido exclusivamente a la no uniformidad de la temperatura del fluido, se denomina convección natural. La convección forzada se logra sometiendo el fluido a un gradiente de presiones, con lo que se fuerza su movimiento de acuerdo a las leyes de la mecánica de fluidos.
Supongamos, por ejemplo, que calentamos desde abajo una cacerola llena de agua. El líquido más próximo al fondo se calienta por el calor que se ha transmitido por conducción a través de la cacerola. Al expandirse, su densidad disminuye y como resultado de ello el agua caliente asciende y parte del fluido más frío baja hacia el fondo, con lo que se inicia un movimiento de circulación. El líquido más frío vuelve a calentarse por conducción, mientras que el líquido más caliente situado arriba pierde parte de su calor por radiación y lo cede al aire situado por encima. De forma similar, en una cámara vertical llena de gas, como la cámara de aire situada entre los dos paneles de una ventana con doble vidrio, el aire situado junto al panel exterior —que está más frío— desciende, mientras que al aire cercano al panel interior —más caliente— asciende, lo que produce un movimiento de circulación.
El calentamiento de una habitación mediante un radiador no depende tanto de la radiación como de las corrientes naturales de convección, que hacen que el aire caliente suba hacia el techo y el aire frío del resto de la habitación se dirija hacia el radiador. Debido a que el aire caliente tiende a subir y el aire frío a bajar, los radiadores deben colocarse cerca del suelo (y los aparatos de aire acondicionado cerca del techo) para que la eficiencia sea máxima. De la misma forma, la convección natural es responsable de la ascensión del agua caliente y el vapor en las calderas de convección natural, y del tiro de las chimeneas. La convección también determina el movimiento de las grandes masas de aire sobre la superficie terrestre, la acción de los vientos, la formación de nubes, las corrientes oceánicas y la transferencia de calor desde el interior del Sol hasta su superficie.
La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias que intercambian calor no tienen que estar en contacto, sino que pueden estar separadas por un vacío. La radiación es un término que se aplica genéricamente a toda clase de fenómenos relacionados con ondas electromagnéticas. Algunos fenómenos de la radiación pueden describirse mediante la teoría de ondas, pero la única explicación general satisfactoria de la radiación electromagnética es la teoría cuántica. En 1905, Albert Einstein sugirió que la radiación presenta a veces un comportamiento cuantizado: en el efecto fotoeléctrico, la radiación se comporta como minúsculos proyectiles llamados fotones y no como ondas. La naturaleza cuántica de la energía radiante se había postulado antes de la aparición del artículo de Einstein, y en 1900 el físico alemán Max Planck empleó la teoría cuántica y el formalismo matemático de la mecánica estadística para derivar una ley fundamental de la radiación. La expresión matemática de esta ley, llamada distribución de Planck, relaciona la intensidad de la energía radiante que emite un cuerpo en una longitud de onda determinada con la temperatura del cuerpo. Para cada temperatura y cada longitud de onda existe un máximo de energía radiante. Sólo un cuerpo ideal (cuerpo negro) emite radiación ajustándose exactamente a la ley de Planck. Los cuerpos reales emiten con una intensidad algo menor.
La contribución de todas las longitudes de onda a la energía radiante emitida se denomina poder emisor del cuerpo, y corresponde a la cantidad de energía emitida por unidad de superficie del cuerpo y por unidad de tiempo. Como puede demostrarse a partir de la ley de Planck, el poder emisor de una superficie es proporcional a la cuarta potencia de su temperatura absoluta. El factor de proporcionalidad se denomina constante de Stefan-Boltzmann en honor a dos físicos austriacos, Joseph Stefan y Ludwig Boltzmann que, en 1879 y 1884 respectivamente, descubrieron esta proporcionalidad entre el poder emisor y la temperatura. Según la ley de Planck, todas las sustancias emiten energía radiante sólo por tener una temperatura superior al cero absoluto. Cuanto mayor es la temperatura, mayor es la cantidad de energía emitida. Además de emitir radiación, todas las sustancias son capaces de absorberla. Por eso, aunque un cubito de hielo emite energía radiante de forma continua, se funde si se ilumina con una lámpara incandescente porque absorbe una cantidad de calor mayor de la que emite.
Las superficies opacas pueden absorber o reflejar la radiación incidente. Generalmente, las superficies mates y rugosas absorben más calor que las superficies brillantes y pulidas, y las superficies brillantes reflejan más energía radiante que las superficies mates. Además, las sustancias que absorben mucha radiación también son buenos emisores; las que reflejan mucha radiación y absorben poco son malos emisores. Por eso, los utensilios de cocina suelen tener fondos mates para una buena absorción y paredes pulidas para una emisión mínima, con lo que maximizan la transferencia total de calor al contenido de la cazuela.
Algunas sustancias, entre ellas muchos gases y el vidrio, son capaces de transmitir grandes cantidades de radiación. Se observa experimentalmente que las propiedades de absorción, reflexión y transmisión de una sustancia dependen de la longitud de onda de la radiación incidente. El vidrio, por ejemplo, transmite grandes cantidades de radiación ultravioleta, de baja longitud de onda, pero es un mal transmisor de los rayos infrarrojos, de alta longitud de onda. Una consecuencia de la distribución de Planck es que la longitud de onda a la que un cuerpo emite la cantidad máxima de energía radiante disminuye con la temperatura. La ley de desplazamiento de Wien, llamada así en honor al físico alemán Wilhelm Wien, es una expresión matemática de esta observación, y afirma que la longitud de onda que corresponde a la máxima energía, multiplicada por la temperatura absoluta del cuerpo, es igual a una constante, 2.878 micrómetros-Kelvin. Este hecho, junto con las propiedades de transmisión del vidrio antes mencionadas, explica el calentamiento de los invernaderos. La energía radiante del Sol, máxima en las longitudes de onda visibles, se transmite a través del vidrio y entra en el invernadero. En cambio, la energía emitida por los cuerpos del interior del invernadero, predominantemente de longitudes de onda mayores, correspondientes al infrarrojo, no se transmiten al exterior a través del vidrio. Así, aunque la temperatura del aire en el exterior del invernadero sea baja, la temperatura que hay dentro es mucho más alta porque se produce una considerable transferencia de calor neta hacia su interior.
Además de los procesos de transmisión de calor que aumentan o disminuyen las temperaturas de los cuerpos afectados, la transmisión de calor también puede producir cambios de fase, como la fusión del hielo o la ebullición del agua. En ingeniería, los procesos de transferencia de calor suelen diseñarse de forma que aprovechen estos fenómenos. Por ejemplo, las cápsulas espaciales que regresan a la atmósfera de la Tierra a velocidades muy altas están dotadas de un escudo térmico que se funde de forma controlada en un proceso llamado ablación para impedir un sobrecalentamiento del interior de la cápsula. La mayoría del calor producido por el rozamiento con la atmósfera se emplea en fundir el escudo térmico y no en aumentar la temperatura de la cápsula.
 


calor y cantidad de calor

CANTIDAD DE CALOR
CALOR.- Se llama calor a la propagacion o flujo de la energía entre cuerpos que se ponen en contacto, es decir, el calor es la energía en movimiento.
Todos los cuerpos de la naturaleza tienden a un estado final llamado equilibrio termodinámico con el medio que los rodea o con otros cuerpos en contacto, es decir adquieren la misma temperatura.

Capacidad Calorifica (C).- Se define como la cantidad de calor que se debe suministrar o sustraer a un cuerpo o sustancia para elevar o disminuir su temperatura en un grado centigrado, es decir.
Siendo T0, T las temperaturas inicial y final respectivamente.
La capacidad calorifica es una cantidad física escalar que depende de la composicion y estructura interna del cuerpo o sustancia, lo cual implica que cada cuerpo o sustancia tiene su propia capacidad calorifica.
Calor específico (Ce).- Se define como la cantidad de calor (Q), que se debe suministrar a la masa "m" de un cyuerpo para elevar su temperatura en un grado centigrado.
Cantidad de calor (Q).- Se llama así, a la cantidad de calor que gana o pierde un cuerpo o sustancia al ponerse en contacto con otro cuerpo que se encuentra a diferente temperatura, cuya ecuacion esta dado por:
Siendo Ce. el calor especifico, "m" la masa y T, T0 las temperaturas inicial y final.
Cuando, T >T0, el cuerpo gana calor


La unidad de Q esta dado en calorias.En esta dirección puede ver una tabla de calores espcíficos de algunas sustancias.