domingo, 25 de octubre de 2015

Dilatación térmica

Dilatación térmica

 
   
Dilatómetro antiguo.
Se denomina dilatación térmica al aumento de longitud, volumen o alguna otra dimensión métrica que sufre un cuerpo físico debido al aumento de temperatura que se provoca en él por cualquier medio. La contracción térmica es la disminución de propiedades métricas por disminución de la misma.
 
 

Dilatación lineal

Es aquella en la cual predomina la variación en una única dimensión, o sea, en el ancho, largo o altura del cuerpo. El coeficiente de dilatación lineal, designado por αL, para una dimensión lineal cualquiera, se puede medir experimentalmente comparando el valor de dicha magnitud antes y después:
\alpha_L = \frac {1} {L} \left ( \frac {dL} {dT} \right )_P =
\left ( \frac {d \ln L} {dT} \right )_P \approx \frac {1} {L} \left ( \frac {\Delta \ L} {\Delta \ T} \right )_P.
Donde \Delta L, es el incremento de su integridad física cuando se aplica un pequeño cambio global y uniforme de temperatura \Delta T a todo el cuerpo. El cambio total de longitud de la dimensión lineal que se considere, puede despejarse de la ecuación anterior:
L_f = L_0 [1 +\alpha_L (T_f - T_0)]\;
Donde:
α=coeficiente de dilatación lineal [°C-1]
L0 = Longitud inicial
Lf = Longitud final
T0 = Temperatura inicial.
Tf = Temperatura final

Dilatación volumétrica

Animación: Dilatación y contracción volumétrica de un gas por variación de la temperatura.
Es el coeficiente de dilatación volumétrico, designado por αV, se mide experimentalmente comparando el valor del volumen total de un cuerpo antes y después de cierto cambio de temperatura como, y se encuentra que en primera aproximación viene dado por:
\alpha_V \approx \frac{1}{V(T)}\frac{\Delta V(T)}{\Delta T} =
\frac{d\ln V(T)}{dT}
Experimentalmente se encuentra que un sólido isótropo tiene un coeficiente de dilatación volumétrico que es aproximadamente tres veces el coeficiente de dilatación lineal. Esto puede probarse a partir de la teoría de la elasticidad lineal. Por ejemplo si se considera un pequeño prisma rectangular (de dimensiones: Lx, Ly y Lz), y se somete a un incremento uniforme de temperatura, el cambio de volumen vendrá dado por el cambio de dimensiones lineales en cada dirección:
\begin{matrix}
\Delta V = V_f - V_0 = & 
((1+\alpha_L\Delta T)L_x\cdot (1+\alpha_L\Delta T)L_y\cdot (1+\alpha_L\Delta T)L_z)- L_xL_yL_z= \\
& = (3\alpha_L\Delta T+ 3\alpha_L^2\Delta T^2+ \alpha_L^3\Delta T^3)(L_xL_yL_z)
\approx 3\alpha_L\Delta T V_0 \end{matrix}
Esta última relación prueba que \scriptstyle \alpha_V\ \approx\ 3 \alpha_L, es decir, el coeficiente de dilatación volumétrico es numéricamente unas 3 veces el coeficiente de dilatación lineal de una barra del mismo material.

Dilatación de área

Cuando un área o superficie se dilata, lo hace incrementando sus dimensiones en la misma proporción. Por ejemplo, una lámina metálica aumenta su largo y ancho, lo que significa un incremento de área. La dilatación de área se diferencia de la dilatación lineal porque implica un incremento de área.
El coeficiente de dilatación de área es el incremento de área que experimenta un cuerpo de determinada sustancia, de área igual a la unidad, al elevarse su temperatura un grado centígrado. Este coeficiente se representa con la letra griega gamma (γ). El coeficiente de dilatación de área se usa para los sólidos. Si se conoce el coeficiente de dilatación lineal de un sólido, su coeficiente de dilatación de área será dos veces mayor:
\gamma_A \approx 2 \alpha
Al conocer el coeficiente de dilatación de área de un cuerpo sólido se puede calcular el área final que tendrá al variar su temperatura con la siguiente expresión:
A_f = A_0 [1 +\gamma_A (T_f - T_0)]\;
Donde:
γ=coeficiente de dilatación de área [°C-1]
A0 = Área inicial
Af = Área final
T0 = Temperatura inicial.
Tf = Temperatura final

Causa de la dilatación

En un sólido las moléculas tienen una posición razonablemente fija dentro de él. Cada átomo de la red cristalina vibra sometido a una fuerza asociada a un pozo de potencial, la amplitud del movimiento dentro de dicho pozo dependerá de la energía total de átomo o molécula. Al absorber calor, la energía cinética promedio de las moléculas aumenta y con ella la amplitud media del movimiento vibracional (ya que la energía total será mayor tras la absorción de calor). El efecto combinado de este incremento es lo que da el aumento de volumen del cuerpo.
En los gases el fenómeno es diferente, ya que la absorción de calor aumenta la energía cinética media de las moléculas lo cual hace que la presión sobre las paredes del recipiente aumente. El volumen final por tanto dependerá en mucha mayor medida del comportamiento de las paredes.

TEMPERATURA Y ESCALAS TERMOMETRICAS

Temperatura

    

La temperatura de un gas ideal monoatómico es una medida relacionada con la energía cinética promedio de sus moléculas al moverse. En esta animación, se muestra a escala la relación entre el tamaño de los átomos de helio respecto a su espaciado bajo una presión de 1950 atmósferas. Estos átomos, a temperatura ambiente, muestran una velocidad media que en esta animación se ha reducido dos billones de veces. De todas maneras, en un instante determinado, un átomo particular de helio puede moverse mucho más rápido que esa velocidad media mientras que otro puede permanecer prácticamente inmóvil.
La temperatura es una magnitud referida a las nociones comunes de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.
En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.
Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.
La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada»; y, en mucha menor medida, y prácticamente solo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y solo en algunos campos de la ingeniería.


 
Escalas Termométricas

Para que seja possível medir a temperatura de um corpo, foi desenvolvido um aparelho chamado termômetro.

O termômetro mais comum é o de mercúrio, que consiste em um vidro graduado com um bulbo de paredes finas que é ligado a um tubo muito fino, chamado tubo capilar.

Quando a temperatura do termômetro aumenta, as moléculas de mercúrio aumentam sua agitação fazendo com que este se dilate, preenchendo o tubo capilar. Para cada altura atingida pelo mercúrio está associada uma temperatura.

A escala de cada termômetro corresponde a este valor de altura atingida.

 

Escala Celsius

É a escala usada no Brasil e na maior parte dos países, oficializada em 1742 pelo astrônomo e físico sueco Anders Celsius (1701-1744). Esta escala tem como pontos de referência a temperatura de congelamento da água sob pressão normal (0 °C) e a temperatura de ebulição da água sob pressão normal (100 °C).

 

Escala Fahrenheit

Outra escala bastante utilizada, principalmente nos países de língua inglesa, criada em 1708 pelo físico alemão Daniel Gabriel Fahrenheit (1686-1736), tendo como referência a temperatura de uma mistura de gelo e cloreto de amônia (0 °F) e a temperatura do corpo humano (100 °F).

Em comparação com a escala Celsius:

0 °C = 32 °F

100 °C = 212 °F

 

Escala Kelvin

Também conhecida como escala absoluta, foi verificada pelo físico inglês William Thompson (1824-1907), também conhecido como Lorde Kelvin. Esta escala tem como referência a temperatura do menor estado de agitação de qualquer molécula (0 K) e é calculada apartir da escala Celsius.

Por convenção, não se usa "grau" para esta escala, ou seja 0 K, lê-se zero kelvin e não zero grau kelvin. Em comparação com a escala Celsius:

-273 °C = 0 K

0 °C = 273 K

100 °C = 373 K

 

 

 

 

 

 

 

TERMOMETRIA Y SUS DIFERENTES ESCALAS

La termometría se encarga de la medición de la temperatura de cuerpos o sistemas.

Existen varias escalas termométricas para medir temperaturas, relativas (específicas) y absolutas.

A partir de la sensación fisiológica, es posible hacerse una idea aproximada de la temperatura a la que se encuentra un objeto. Pero esa apreciación directa está limitada por diferentes factores. Por ello para medir temperaturas se recurre a los termómetros.

En el sistema SI de unidades, las unidades más utilizada para medir la temperatura son la Celsius (° C) y  el sistema Inglés utiliza la escala Fahrenheit (F); estas en la escala específica. Hay también la escala de temperaturas absolutas, Kelvin (K) y Rankine.

Hasta 1954 estas escalas termométricas se basan en la fusión del hielo y el agua hirviendo. La temperatura de fusión del hielo se define como la temperatura de una mezcla de hielo y agua, en la escala específica recibe la marca 0 ° centígrados y 32 °F. La temperatura de vaporización del agua es la temperatura a la cual el agua y el vapor están en equilibrio a la presión de 1 atm; en la escala específica recibe la marca de los 100 ° centígrados 212 °F.

La escala Kelvin es la escala de temperatura absoluta que se relaciona con la escala Celsius. Esta relación es la siguiente:

Siendo 273,15 K a la fusión del hielo y K 373,15 para hervir agua.


La escala de Rankine es la escala de temperatura absoluta que se relaciona con la escala Fahrenheit, y esto se lleva a cabo de la siguiente manera:

Siendo R 491,67 por derretimiento del hielo y R 671,67 por agua hirviendo.

Escala Celsius

El científico sueco Anders Celsius (1701-1744) construyó por primera vez la escala termométrica que lleva su nombre. Eligió como puntos fijos el de fusión del hielo y el de ebullición del agua.

Asignó al primero el valor 0 y al segundo el valor 100, con lo cual fijó el valor del grado Celsius (°C) como la centésima parte del intervalo de temperatura comprendido entre esos dos puntos fijos.

Celsius definió su escala en 1742 considerando las temperaturas de congelación y ebullición del agua, asignándoles originalmente los valores 0 °C y 100 °C respectivamente (de manera que más caliente resultaba en una menor temperatura); fue Carlos Linneo quien invirtió ambos puntos un par de años más tarde.

William Thomson definió en 1848 su escala absoluta de temperatura en términos del grado Celsius.

 

La escala de Celsius es muy utilizada para expresar las temperaturas de uso cotidiano, desde la temperatura del aire a la de un sin fin de dispositivos domésticos.

También se la utiliza en trabajos científicos y tecnológicos, aunque en muchos casos resulta obligada la utilización de la escala de Kelvin.

Escala Fahrenheit

El grado Fahrenheit (representado como °F) es una escala de temperatura propuesta por Daniel Gabriel Fahrenheit en 1714. La escala establece como las temperaturas de congelación y evaporación del agua, 32 °F y 212 °F, respectivamente. El método de definición es similar al utilizado para el grado Celsius (°C).

Esta escala divide la diferencia entre los puntos de fusión y de ebullición del agua en 180 intervalos iguales.

Escala Kelvin

Si bien en la vida diaria las escalas Celsius y Fahrenheit son las más importantes, en ámbito científico se usa otra, llamada "absoluta" o Kelvin, en honor a sir Lord Kelvin.

El kelvin, simbolizado como K, es la unidad de temperatura de la escala creada por William Thomson en el año 1848, sobre la base del grado Celsius.

Se representa con la letra K, y nunca "°K". Actualmente, su nombre no es el de "grados kelvin", sino simplemente "kelvin".

Coincidiendo el incremento en un grado Celsius con el de un kelvin, su importancia radica en el 0 de la escala: la temperatura de 0 K es denominada 'cero absoluto' y corresponde al punto en el que las moléculas y átomos de un sistema tienen la mínima energía térmica posible.

También en iluminación de vídeo y cine se utilizan los kelvin como referencia de la temperatura de color.

Escala Rankine

Se denomina Rankine a la escala de temperatura que se define midiendo en grados Fahrenheit sobre el cero absoluto, por lo que carece de valores negativos. Esta escala fue propuesta por el físico e ingeniero escocés William Rankine en 1859.

El grado Rankine tiene su punto de cero absoluto a −459,67°F y los intervalos de grado son idénticos al intervalo de grado Fahrenheit.

Usado comúnmente en EE.UU. como medida de temperatura termodinámica. Aunque en la comunidad científica las medidas son efectuada en Sistema Internacional de Unidades, por tanto la temperatura es medida en Kelvin (K).

El grado Rankine tiene su punto de cero absoluto a −459,67°F y los intervalos de grado son idénticos al intervalo de grado Fahrenheit. La relación entre la temperatura en grados Rankine (R) y la temperatura correspondiente en grados (°F) Fahrenheit es:

R=F+459.67
F=R-459.67

Cero grados Rankine (0 °R) equivalen a −273,15 °C ó 0 K. Para convertir de grados Rankine a Kelvin se multiplica por un factor de 9/5:

R=9/5K
K=5/9R
R=9/5C+491.67
C=5/9R-273.15
 

Teorema de Torricelli

Teorema de Torricelli

Resultado de imagen para experimento de torricelli

   
El teorema de Torricelli o principio de Torricelli es una aplicación del principio de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad.
La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio.
Matemáticamente:
 V_t = \sqrt{{2\cdot g\cdot\left ( h + \frac {v_0^2} {2\cdot g} \right ) }}
donde:
  •  \ V_t es la velocidad teórica del líquido a la salida del orificio
  •  \ v_0 es la velocidad de aproximación o inicial.
  •  \ h es la distancia desde la superficie del líquido al centro del orificio.
  •  \ g es la aceleración de la gravedad
Para velocidades de aproximación bajas, la mayoría de los casos, la expresión anterior se transforma en:
V_r = C_v \sqrt{{2\cdot g\cdot h }}
donde:
  •  \ V_r es la velocidad real media del líquido a la salida del orificio
  •  \ C_v es el coeficiente de velocidad. Para cálculos preliminares en aberturas de pared delgada puede admitirse 0,95 en el caso más desfavorable.
tomando  \ C_v =1
V_r = \sqrt{{2\cdot g\cdot h }}
Experimentalmente se ha comprobado que la velocidad media de un chorro de un orificio de pared delgada, es un poco menor que la ideal, debido a la viscosidad del fluido y otros factores tales como la tensión superficial, de ahí el significado de este coeficiente de velocidad.

Caudal descargado[editar]

El caudal o volumen del fluido que pasa por el orificio en un tiempo, \ Q, puede calcularse como el producto de \ S_c, el área real de la sección contraída, por \ V_r, la velocidad real media del fluido que pasa por esa sección, y por consiguiente se puede escribir la siguiente ecuación:
Q = S_c\cdot V_r = (S\cdot C_c)C_v\sqrt{{2\cdot g\cdot h}}
Q = C_d\cdot S\sqrt{{2\cdot g\cdot h}}
en donde
  • S\sqrt{{2\cdot g\cdot h}} representa la descarga ideal que habría ocurrido si no estuvieran presentes la fricción y la contracción.
  • \ C_c es el coeficiente de contracción de la vena fluida a la salida del orificio. Su significado radica en el cambio brusco de sentido que deben realizar las partículas de la pared interior próximas al orificio. Es la relación entre el área contraída \ S_c y la del orificio \ S. Suele estar en torno a 0,65.
  • \ C_d es el coeficiente por el cual el valor ideal de descarga es multiplicado para obtener el valor real, y se conoce como coeficiente de descarga. Numéricamente es igual al producto de los otros dos coeficientes. \ C_d=C_c C_v
El coeficiente de descarga variará con la carga y el diámetro del orificio. Sus valores para el agua han sido determinados y tabulados por numerosos experimentadores. De forma orientativa se pueden tomar valores sobre 0,6. Así se puede apreciar la importancia del uso de estos coeficientes para obtener unos resultados de caudal aceptables.

GASTOS VOLUMETRICOS, TEOREMA DE BERNOULLI Y SUS APLICACIONES, EDUCACION DE CONTINUIDAD

Gasto o Caudal


  • En dinámica de fluidos, caudal es la cantidad de fluido que avanza en una unidad de tiempo. Se denomina también caudal volumétrico o índice de flujo fluido, y que puede ser expresado en masa o en volumen. Caudalímetro: instrumento empleado para la medición del caudal de un fluido o gasto másico.Cálculo de caudal de agua en tubería: estimación del comportamiento de un flujo de tubería, basado en la ecuación de continuidad:En ecología, se denomina caudal al volumen de agua que arrastra un río, o cualquier otra corriente de agua para preservar los valores ecológicos en el cauce de la misma; se mide en metros cúbicos por segundo.
Asociado al término anterior:
  • Caudal sólido: denominación para el material arrastrado por la corriente de agua.
  • Caudal regularizado: determinación de la capacidad reguladora de un embalse.
  • Régimen fluvial: se refiere a las variaciones en el caudal de un río a lo largo de un año.
La ecuación de continuidad se puede expresar como:
ρ1.A1.V1 = ρ2.A2.V2
Cuando ρ1 = ρ2, que es el caso general tratándose de agua, y flujo en régimen permanente, se tiene:
[pic]
o de otra forma:
[pic](el caudal que entra es igual al que sale)
Donde:
• Q = caudal (metro cúbico por segundo; m3 / s)
• V = velocidad (m / s)
• A = area transversal del tubo de corriente o conducto (m2)



 

TEOREMA DE  DANIEL BERNOULLI


El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido en reposo moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

  1. Cinética: es la energía debida a la velocidad que posea el fluido.

  2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.

  3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como “Ecuación de Bernoulli” (Trinomio de Bernoulli) consta de estos mismos términos.

<br /><br /><br /><br /><br />
\frac{V^2 \rho}{2}+{P}+{\rho g z}=constante<br /><br /><br /><br /><br />

donde:

  • V = velocidad del fluido en la sección considerada.

  • \rho = densidad del fluido.

  • P = presión a lo largo de la línea de corriente.

  • g = aceleración gravitatoria

  • z = altura en la dirección de la gravedad desde una cota de referencia.

Para aplicar la ecuación se deben realizar los siguientes supuestos:

  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona ‘no viscosa’ del fluido.

  • Caudal constante

  • Flujo incompresible, donde ρ es constante.

  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo rotacional

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

Cada uno de los términos de esta ecuación tiene unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de Bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término z se suele agrupar con P/\gamma (donde \gamma = \rho  g ) para dar lugar a la llamada altura piezo métrica o también carga piezométrica.[editar]Características y consecuencia

 \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presión}} + z}^{\mbox{altura o carga piezométrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidráulica}}

También podemos reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por \gamma, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.


Esquema del efecto Venturi.

 \underbrace{\frac{\rho V^2}{2}}_{\mbox{presión dinámica}}+\overbrace{P+ \gamma z}^{\mbox{presión estática}}=constante

o escrita de otra manera más sencilla:

q+p=p_0

donde

  • q=\frac{\rho V^2}{2}

  • p=P+ \gamma z

  • p_0 es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:

\overbrace{\frac{{V}^2}{2}}^{\mbox{energía cinética}}+\underbrace{\frac{P}{\rho}}_{\mbox{energía de flujo}}+\overbrace{g z}^{\mbox{energía potencial}} = constante

Aplicaciones del Principio de Bernoulli

Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayo

 

Tubería

La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.  es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.

Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.

Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.

Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.

Dispositivos de Venturi
En oxigeno terapia  la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual esta basado en el principio de Bernoulli.

Aviación
Los aviones tienen el extradós (parte superior del ala o plano) más curvado que el intradós (parte inferior del ala o plano). Esto causa que la masa superior de aire, al aumentar su velocidad, disminuya su presión, creando así una succión que ayuda a sustentar la aeronave.

 

 

 

Ecuación de continuidad

 

 
        

En física, una ecuación de continuidad expresa una ley de conservación de forma matemática, ya sea de forma integral como de forma diferencial.

 

 

 


Teoría electromagnética

En teoría electromagnética, la ecuación de continuidad viene derivada de dos de las ecuaciones de Maxwell. Establece que la divergencia de la densidad de corriente es igual al negativo de la derivada de la densidad de carga respecto del tiempo:
En otras palabras, sólo podrá haber un flujo de corriente si la cantidad de carga varía con el paso del tiempo, ya que esta disminuye o aumenta en proporción a la carga que es usada para alimentar dicha corriente.
 \nabla \cdot \vec{J} = - {\partial \rho \over \partial t}
Esta ecuación establece la conservación de la carga.

Mecánica de fluidos

En mecánica de fluidos, una ecuación de continuidad es una ecuación de conservación de la masa. Su forma diferencial es:
 {\partial \rho \over \partial t} + \nabla \cdot (\rho \vec{u}) = 0
donde  \rho es la densidad, t el tiempo y \vec{u} = u_x \vec i + u_y \vec j + u_z \vec k la velocidad del fluido. Es una de las tres ecuaciones de Euler.

Mecánica cuántica[editar]

En Mecánica cuántica, una ecuación de continuidad es una ecuación de conservación de la probabilidad. Su forma diferencial es:[1]
\frac {\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0
Donde  \rho es la densidad de probabilidad de la función de ondas y  \mathbf{j} es la corriente de probabilidad o densidad de corriente. Estas dos expresiones se pueden relacionar con la función de onda de una partícula como:
\rho=|\Psi|^2=\Psi^*(\mathbf{r},t)\Psi(\mathbf{r},t), \quad \mathbf{j} = {i \over 2m} \left( \Psi^*\boldsymbol{\nabla}\Psi - \Psi\boldsymbol{\nabla}\Psi^* \right)\,\!

Mecánica relativista[editar]

En la teoría especial de la relatividad, una ecuación de continuidad debe escribirse en forma covariante, por lo que la ecuación de continuidad usual para la carga eléctrica y otras magnitudes conservadas se suele escribir en teoría de la relatividad como:
\part_\alpha j^\alpha = \frac{\part j^\alpha}{\part x^\alpha} = 0, \qquad \qquad 
\begin{cases} (j^0, j^1, j^2, j^3) = (\rho c, j_x, j_y, j_z)\\ 
(x^0,x^1,x^2,x^3) = (ct, x, y, z) \end{cases}
La ecuación de continuidad para la densidad másica (o más exactamente la energía másica) y la densidad de momento lineal se escribe en términos del tensor energía impulso:
\part_\alpha T^{0\alpha} = \frac{\part T^{0\alpha}}{\part x^\alpha} = 0
En el contexto de la teoría general de la relatividad las derivadas parciales deben substituirse por derivadas covariantes:
\nabla_\alpha j^\alpha = 0 \quad \Rightarrow \quad
\frac{1}{\sqrt{|g|}} \frac{\part}{\part x^k} \left(\sqrt{|g|} j^k \right) = 0
Donde \scriptstyle \sqrt{|g|} es la raíz del determinante del tensor métrico asociado a las coordenadas \scriptstyle x^\alpha. Y análogamente para la conservación de la energía:
\nabla_\alpha T^{0\alpha} = 0