domingo, 27 de septiembre de 2015


Densidad y peso específico

Densidad de un líquido

La densidad es la cantidad de masa por unidad de volumen. Se denomina con la letra ρ. En el sistema internacional se mide en kilogramos / metro cúbico.



Peso específico de un líquido

El peso específico de un fluido se calcula como su peso sobre una unidad de volumen (o su densidad por g) . En el sistema internacional se mide en Newton / metro cúbico.






Fuerza de empuje y Principio de Arquímedes

 
Cuando se sumerge un cuerpo en un líquido parece que pesara menos. Lo podemos sentir  cuando nos sumergimos en una piscina, o cuando tomamos algo por debajo del agua, los objetos parecieran que pesan menos. Esto es debido a que, todo cuerpo sumergido recibe una fuerza de abajo hacia arriba.
Cuando en un vaso lleno de agua sumergimos un objeto, podemos ver que el nivel del líquido sube y se derrama cierta cantidad de líquido. Se puede decir que un cuerpo que flota desplaza parte del agua.
ArquimedesEmpuje002
El líquido ejerce fuerza hacia arriba.

Arquímedes, quien era un notable matemático y científico griego, se percató de estas conclusiones mientras se bañaba en una tina, al comprobar cómo el agua se desbordaba y se derramaba, y postuló la siguiente ley que lleva su nombre:
Principio de Arquímedes
Todo cuerpo sumergido en un líquido recibe un empuje, de abajo hacia arriba, igual al peso del líquido desalojado.
Cuerpos sumergidos
Sobre un cuerpo sumergido actúan dos fuerzas; su peso, que es vertical y hacia abajo y el empuje que es vertical pero hacia arriba.
Si queremos saber si un cuerpo flota es necesario conocer su peso específico, que es igual a su peso dividido por su volumen.
Entonces, se pueden producir tres casos:
1.     si el peso es mayor que el empuje ( P > E ), el cuerpo se hunde. Es decir, el peso específico del cuerpo es mayor al del líquido.
2.     si el peso es igual que el empuje ( P = E ), el cuerpo no se hunde ni emerge. El peso específico del cuerpo es igual al del líquido.
3. Si el peso es menor que el empuje ( P < E ), el cuerpo flota. El peso específico del cuerpo es menor al del líquido.
ArquimedesEmpuje
Cuerpos sumergidos: tres casos.

Ejemplo, con un caso práctico: ¿por qué los barcos no se hunden?
ArquimedeEmpuje001
Los barcos no se hunden porque su peso específico es menor al peso específico del agua, por lo que se produce un empuje mayor que mantiene el barco a flote.
Esto a pesar de que el hierro o acero con que están hechos generalmente los barcos es de peso específico mayor al del agua y se hunde (un pedazo de hierro en el agua se va al fondo), pero si consideramos todas las partes del barco incluyendo los compartimientos vacíos, el peso específico general del barco disminuye y es menor al del agua, lo que hace que éste se mantenga a flote.

 





PRESION HODROSTATICA Y PRENSA HIDRAULICA

 
La presión hidrostática es un tipo de presión debida al peso de un fluido en reposo, en éste la única presión existente es la presión hidrostática. En un fluido en movimiento además puede aparecer una presión hidrodinámica relacionada con la velocidad del fluido.
Un fluido pesa y ejerce presión sobre las paredes, sobre el fondo del recipiente que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas resultantes de las presiones ya no serían necesariamente perpendiculares a las superficies.
Resultado de imagen para presion hidrostatica


 
La prensa hidráulica
es un mecanismo conformado por vasos comunicantes impulsados por pistones de diferentes áreas que, mediante una pequeña fuerza sobre el pistón de menor área, permite obtener una fuerza mayor en el pistón de mayor área. Los pistones son llamados pistones de agua, ya que son hidráulicos. Estos hacen funcionar conjuntamente a las prensas hidráulicas por medio de motores.
 
Antigua prensa hidráulica.
 
En el siglo XVII, en Francia, el matemático y filósofo Blaise Pascal comenzó una investigación referente al principio mediante el cual la presión aplicada a un líquido contenido en un recipiente se transmite con la misma intensidad en todas direcciones. Gracias a este principio se pueden obtener fuerzas muy grandes utilizando otras relativamente pequeñas. Uno de los aparatos más comunes para alcanzar lo anteriormente mencionado es la prensa hidráulica, la cual está basada en el principio de Pascal.
El rendimiento de la prensa hidráulica guarda similitudes con el de la palanca, pues se obtienen fuerzas mayores que las ejercidas pero se aminora la velocidad y la longitud de desplazamiento, en similar proporción.

martes, 1 de septiembre de 2015

Hidrostática


La hidrostática es la rama de la mecánica de fluidos o de la hidráulica que estudia los fluidos incompresibles en estado de equilibrio; es decir, sin que existan fuerzas que alteren su movimiento o posición, en contraposición a la dinámica de fluidos.

Características de los fluidos

Se denomina fluido a aquél medio continuo formado por alguna sustancia entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas restitutivas).
Los estados de la materia líquido, gaseoso y plasma son fluidos, además de algunos sólidos que presentan características propias de éstos, un fenómeno conocido como solifluxión y que lo presentan, entre otros, los glaciares y el magma.
Las caracteristicas principales que presenta todo fluido son:
  • Cohesión. Fuerza que mantiene unidas a las moléculas de una misma sustancia.
  • Tensión superficial. Fenómeno que se presenta debido a la atracción entre las moléculas de la superfíciede un líquido.
  • Adherencia. Fuerza de atracción que se manifiesta entre las moléculas de dos sustancias diferentes en contacto.
  • Capilaridad. Se presenta cuando existe contacto entre un líquido y una pared sólida, debido al fenómeno de adherencia. En caso de ser la pared un recipiente o tubo muy delgado (denominados "capilares") este fenómeno se puede apreciar con mucha claridad.

Presión de un fluido en equilibrio

En términos de mecánica clásica, la presión de un fluido incompresible en estado de equilibrio se puede expresar mediante la siguiente fórmula:
\delta P = \rho g h
Donde P es la presión, ρ es la densidad del fluido, g es la aceleración de la gravedad y h es la altura.

Principio de Pascal



Rotura de un tonel bajo lapresión de una columna de agua.
El principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: «el incremento de la presión aplicada a una superficie de un fluido incompresible (generalmente se trata de un líquido incompresible), contenido en un recipiente indeformable, se transmite con el mismo valor a cada una de las partes del mismo».
Es decir, que si se aplica presión a un líquido no comprimible en un recipiente cerrado, esta se transmite con igual intensidad en todas direcciones y sentidos. Este tipo de fenómeno se puede apreciar, por ejemplo, en la prensa hidráulica o en el gato hidráulico; ambos dispositivos se basan en este principio. La condición de que el recipiente sea indeformable es necesaria para que los cambios en la presión no actúen deformando las paredes del mismo en lugar de transmitirse a todos los puntos del líquido.

Principio de Arquímedes

El principio de Arquímedes establece que cualquier cuerpo sólido que se encuentre sumergido total o parcialmente en un fluido será empujado en dirección ascendente por una fuerza igual al peso del volumen del líquido desplazado por el cuerpo sólido. El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido solo parcialmente.
 
 

Presión

Distribución de presiones sobre un cilindro que se mueve a velocidad constante en el seno de un fluido ideal.
Esquema; se representa cada "elemento" con una fuerza dP y un área dS.
Animación: efecto de la presión en el volumen de un gas.
La presión (símbolo p) es una magnitud física que mide la proyección de la fuerza en dirección perpendicularpor unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denominapascal (Pa) que es equivalente a una fuerza total de un newton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.

 

Definición

La presión es la magnitud escalar que relaciona la fuerza con la superficie sobre la cual actúa, es decir, equivale a la fuerza que actúa sobre la superficie. Cuando sobre una superficie plana de área A se aplica una fuerza normalF de manera uniforme, la presión P viene dada de la siguiente forma:
p = \frac{F}{A}
En un caso general donde la fuerza puede tener cualquier dirección y no estar distribuida uniformemente en cada punto la presión se define como:
p = \frac{d\bold{F}_A}{dA}\cdot \bold{n}
Donde \scriptstyle \bold{n} es un vector unitario y normal a la superficie en el punto donde se pretende medir la presión. La definición anterior puede escribirse también como:
p = \frac{d}{dA}\int_S \mathbf{f}\cdot\mathbf{n}\ dS
donde:
\mathbf{f}, es la fuerza por unidad de superficie.
\mathbf{n}, es el vector normal a la superficie.
A\,, es el área total de la superficie S.

Presión absoluta y relativa[editar]

En determinadas aplicaciones la presión se mide no como la presión absoluta sino como la presión por encima de la presión atmosférica, denominándosepresión relativa, presión normal, presión de gauge o presión manométrica.
Consecuentemente, la presión absoluta es la presión atmosférica (Pa) más la presión manométrica (Pm) (presión que se mide con el manómetro).
P_{ab} = P_a + P_m

Presión hidrostática e hidrodinámica

En un fluido en movimiento la presión hidrostática puede diferir de la llamada presión hidrodinámica por lo que debe especificarse a cual de las dos se está refiriendo una cierta medida de presión.

Presión de un gas 

En el marco de la teoría cinética la presión de un gas es explicada como el resultado macroscópico de las fuerzas implicadas por las colisiones de las moléculas del gas con las paredes del contenedor. La presión puede definirse por lo tanto haciendo referencia a las propiedades microscópicas del gas:
Para un gas ideal con N moléculas, cada una de masa m y moviéndose con una velocidad aleatoria promedio vrms contenido en un volumen cúbico V las partículas del gas impactan con las paredes del recipiente de una manera que puede calcularse de manera estadística intercambiando momento lineal con las paredes en cada choque y efectuando una fuerza neta por unidad de área que es la presión ejercida por el gas sobre la superficie sólida.
La presión puede calcularse entonces como
P = {Nmv_{rms}^2 \over 3V}  (gas ideal)
Este resultado es interesante y significativo no solo por ofrecer una forma de calcular la presión de un gas sino porque relaciona una variable macroscópica observable, la presión, con la energía cinética promedio por molécula, 1/2 mvrms², que es una magnitud microscópica no observable directamente. Nótese que el producto de la presión por el volumen del recipiente es dos tercios de la energía cinética total de las moléculas de gas contenidas.

Propiedades de la presión en un medio fluido

Manómetro.
  1. La fuerza asociada a la presión en un fluido ordinario en reposo se dirige siempre hacia el exterior del fluido, por lo que debido al principio de acción y reacción, resulta en una compresión para el fluido, jamás una tracción.
  2. La superficie libre de un líquido en reposo (y situado en un campo gravitatorio constante) es siempre horizontal. Eso es cierto solo en la superficie de la Tierra y a simple vista, debido a la acción de la gravedad constante. Si no hay acciones gravitatorias, la superficie de un fluido es esférica y, por tanto, no horizontal.
  3. En los fluidos en reposo, un punto cualquiera de una masa líquida está sometida a una presión que es función únicamente de la profundidad a la que se encuentra el punto. Otro punto a la misma profundidad, tendrá la misma presión. A la superficie imaginaria que pasa por ambos puntos se llama superficie equipotencial de presión osuperficie isobárica.

Aplicaciones

Frenos hidráulicos

Muchos automóviles tienen sistemas de frenado antibloqueo (ABS, siglas en inglés) para impedir que la fuerza de fricción de los frenos bloqueen las ruedas, provocando que el automóvil derrape. En un sistema de frenado antibloqueo un sensor controla la rotación de las ruedas del coche cuando los frenos entran en funcionamiento. Si una rueda está a punto de bloquearse los sensores detectan que la velocidad de rotación está bajando de forma brusca, y disminuyen la presión del freno un instante para impedir que se bloquee. Comparándolo con los sistemas de frenado tradicionales, los sistemas de frenado antibloqueo consiguen que el conductor controle con más eficacia el automóvil en estas situaciones, sobre todo si la carretera está mojada o cubierta por la nieve.

Refrigeración[editar]

La refrigeración se basa en la aplicación alternativa de presión elevada y baja, haciendo circular un fluido en los momentos de presión por una tubería. Cuando el fluido pasa de presión elevada a baja en el evaporador, el fluido se enfría y retira el calor de dentro del refrigerador.
Como el fluido se encuentra en un ciclo cerrado, al ser comprimido por un compresor para elevar su temperatura en el condensador, que también cambia de estado a líquido a alta presión, nuevamente está listo para volverse a expandir y a retirar calor (recordemos que el frío no existe es solo una ausencia de calor).

Neumáticos de los automóviles

Se inflan a una presión de 206 842 Pa, lo que equivale a 30 psi (utilizando el psi como unidad de presión relativa a la presión atmosférica). Esto se hace para que los neumáticos tengan elasticidad ante fuertes golpes (muy frecuentes al ir en el automóvil). El aire queda encerrado a mayor presión que la atmosférica dentro de las cámaras (casi 3 veces mayor), y en los neumáticos más modernos entre la cubierta de caucho flexible y la llanta que es de un metal rígido.

Presión ejercida por los líquidos

La presión que se origina en la superficie libre de los líquidos contenidos en tubos capilares, o en gotas líquidas se denomina presión capilar.
Se produce debido a la tensión superficial. En una gota es inversamente proporcional a su radio, llegando a alcanzar valores considerables.
Por ejemplo, en una gota de mercurio de una diezmilésima de milímetro de diámetro hay una presión capilar de 100 atmósferas. La presión hidrostática corresponde al cociente entre la fuerza normal F que actúa, en el seno de un fluido, sobre una cara de un cuerpo y que es independiente de la orientación de ésta.
Depende únicamente de la profundidad a la que se encuentra situado el elemento considerado. La de un vapor, que se encuentra en equilibrio dinámico con un sólido o líquido a una temperatura cualquiera y que depende únicamente de dicha temperatura y no del volumen, se designa con el nombre de presión de vapor o saturación.

Unidades de medida, presión y sus factores de conversión[editar]

La presión atmosférica media es de 101 325 pascales (101,3 kPa), a nivel del mar, donde 1 Atm = 1,01325 bar = 101325 Pa = 1,033 kgf/cm² y 1 m.c.a = 9,81 kPa.
Unidades de presión y sus factores de conversión
 PascalbarN/mm²kp/m²kp/cm²atmTorrPSI
1 Pa (N/m²)=110−510−60,1020,102×10−40,987×10−50,00750,00014503
1 bar (10N/cm²) =10510,1102001,020,98775014,5036
1 N/mm² =1061011,02×10510,29,877500145,0536
1 kp/m² =9,819,81×10−59,81×10−6110−40,968×10−40,07360,001422
1 kp/cm² =9,81x1040,9810,09811000010,96873614,22094
1 atm (760 Torr) =1013251,013250,1013103301,033176014,69480
1 Torr (mmHg) =133,320,00133321,3332×10−413,61,36x10−31,32x10−310,019336
1 PSI (libra / pulgada cuadrada) =6894,757290,0689480,006894703,1880,07031880,06804651,71491
Las obsoletas unidades manométricas de presión, como los milímetros de mercurio, están basadas en la presión ejercida por el peso de algún tipo estándar de fluido bajo cierta gravedad estándar. Las unidades de presión manométricas no deben ser utilizadas para propósitos científicos o técnicos, debido a la falta de repetibilidad inherente a sus definiciones. También se utilizan los milímetros de columna de agua.

Estado de agregación de la materia


Este diagrama muestra la nomenclatura para las diferentes transiciones de fase su reversibilidad y relación con la variación de la entalpía.
En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones detemperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólida, líquida, gaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einstein, condensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quark-gluón.


Elasticidad (mecánica de sólidos)

 



Una varilla elástica vibrando, es un ejemplo de sistema donde la energía potencial elástica se transforma en energía cinética y viceversa.
En física el término elasticidad designa la propiedad mecánica de ciertos materiales de sufrir deformaciones reversibles cuando se encuentran sujetos a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan.