martes, 24 de marzo de 2015

Equilibrio Rotacional

Ocurre cuando un cuerpo o sistema no gira con respecto a algún punto, aunque exista una tendencia.
 

CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.


Equilibrio Traslacional

Seguramente estas familiarizado con la idea básica del concepto fuerza. De tu experiencia cotidiana sabes que aplicas una fuerza cuando jalas o empujas algún objeto. Cuando pateas un balón sabes que aplicas una fuerza. Tal vez creas que la fuerza se asocia con el movimiento, sin embargo, no siempre que se aplica una fuerza se produce movimiento. Si empujas una de las paredes de tu salón de clases verás que no se produce movimiento alguno a pesar del esfuerzo que haces.


Decimos que un objeto se encuentra en equilibrio si no esta acelerado. Por tanto el equilibrio considera dos situaciones: cuando el objeto esta reposo o bien cuando se mueve de una velocidad constante en una trayectoria rectilínea


Decimos que un objeto esta en equilibrio traslacional cuando se encuentra en reposo o bien se mueve en línea recta con velocidad constante.

 
Condiciones de equilibrio: Para que un cuerpo se encuentre en equilibrio, se requiere que la sumatoria de todas las fuerzas o torcas que actúan sobre él sea igual a cero. Se dice que todo cuerpo tiene dos tipos de equilibrio, el de traslación y el de rotación.

Traslación: Es aquel que surge en el momento en que todas las fuerzas que actúan sobre el cuerpo se nulifican, o sea, la sumatoria de las mismas sea igual a cero.
 
Problema del equilibrio traslacional
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:


A continuación se elabora su diagrama de cuerpo libre.





Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*

Porque los cuadrantes en los que se localizan son negativos.
Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:

EFx=-F1 cos 45+F2=0
F2=F1(0.7071)
EFy=-F1sen45-8N=0
8N=F1(0.7071)
F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N 

Leyes de Newton

¿Qué son las Leyes de Newton?

Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton,1 son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que
Constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones… La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
  • Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
  • Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.

Las 3 Leyes físicas, junto con la Ley de Gravitación Universal formuladas por Sir Isaac Newton, son la base fundamental de la Física Moderna.



Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Las leyes

De manera Generalizada, las 3 leyes de Sir Isaac Newton son:

Primera Ley o Ley de Inercia

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que otros cuerpos actúen sobre él.

Segunda ley o Principio Fundamental de la Dinámica

La fuerza que actúa sobre un cuerpo es directamente proporcional a su aceleración.

Tercera ley o Principio de acción-reacción

Cuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza igual y de sentido opuesto.

Primera Ley o Ley de la Inercia

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.
La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cuál sea el observador que describa el movimiento.
Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento.
1ra Ley de Newton: Ley de la Inercia

La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.
De manera concisa, esta ley postula, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él.
Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma, un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

Segunda ley de Newton o Ley de fuerza

La segunda ley del movimiento de Newton dice que
el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algoque provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2

2da Ley de Newton: Ley de la Fuerza o Principio Fundamental de la Mecánica

La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m ·a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actúa sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habíamos visto anteriormente.
Otra consecuencia de expresar la Segunda Ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actúa sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimientosi la fuerza total que actúa sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos.
Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
Donde  es la cantidad de movimiento y  la fuerza total. Si suponemos la masa constante y nos manejamos con velocidades que no superen el 10% de la velocidad de la luz podemos reescribir la ecuación anterior siguiendo los siguientes pasos:
Sabemos que  es la cantidad de movimiento, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.
Consideramos a la masa constante y podemos escribir  aplicando estas modificaciones a la ecuación anterior que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre  y . Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.

Tercera Ley de Newton o Ley de acción y reacción

Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.
La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en sentido.
Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice esencialmente que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.

3ra Ley de Newton: Ley de la Acción y Reacción
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita “c”.
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.
Esta ley es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros también nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.
Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre sí, puesto que actúan sobre cuerpos distintos.

Movimiento Circular Uniformemente Acelerado

El (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.
 
Dibujo del movimiento circular uniformemente acelerado

Posición

Dibujo de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido (θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:

Fórmula del ángulo recorrido por una partícula dependiendo del tiempo en un movimiento circular uniformemente acelerado (MCUA)

Aplicando la fórmula del incremento de ángulo calculamos la posición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:

Fórmula de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Velocidad angular

La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instante t como:

Fórmula de la velocidad angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

El sentido de la aceleración angular α puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.

Velocidad tangencial

La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencial también se incrementa linealmente mediante la siguiente fórmula:

Fórmula de la velocidad tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.

Aceleración angular

La aceleración angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración tangencial

La aceleración tangencial en el movimiento circular uniformemente acelerado MCUA se calcula como el incremento de velocidad v desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)
Período
En el MCUA la velocidad angular cambia respecto al tiempo. Por tanto, el período cada vez será menor o mayor según si decrece o crece la velocidad angular.
 

Fórmula del período en el movimiento circular uniformemente acelerado (MCUA)
 

Frecuencia

La frecuencia en el caso del MCUA es mayor o menor porque la velocidad angular cambia. La fórmula de la frecuencia será:
 

Fórmula de la frecuencia en el movimiento circular uniformemente acelerado (MCUA)


 


 


Movimiento Circular Uniforme

La Naturaleza y tu día a día están llenos de ejemplos de movimientos circulares uniformes (m.c.u.). La propia Tierra es uno de ellos: da una vuelta sobre su eje cada 24 horas. Los viejos tocadiscos o un ventilador son otros buenos ejemplos de m. c. u. 
 
El movimiento circular uniforme (m. c. u.) es un movimiento de trayectoria circular en el que la velocidad angular es constante. Esto implica que describe ángulos iguales en tiempos iguales. En él, el vector velocidad no cambia de módulo pero sí de dirección (es tangente en cada punto a la trayectoria). Esto quiere decir que no tiene aceleración tangencial ni aceleración angular,  aunque sí aceleración normal.


Vector de posición en movimiento circular uniforme

Características del Movimiento Circular Uniforme (M.C.U.)

Algunas de las principales características del movimiento circular uniforme (m. c. u.) son las siguientes:
  1. La velocidad angular es constante (ω = cte)
  2. El vector velocidad es tangente en cada punto a la trayectoria y su sentido es el del movimiento. Esto implica que el movimiento cuenta con aceleración normal
  3. Tanto la aceleración angular (α) como la aceleración tangencial (at) son nulas, ya que la rapidez o celeridad (módulo del vector velocidad) es constante
  4. Existe un periodo (T), que es el tiempo que el cuerpo emplea en dar una vuelta completa. Esto implica que las características del movimiento son las mismas cada T segundos. La expresión para el cálculo del periodo es [Math Processing Error]  y es sólo válida en el caso de los movimientos circulares uniformes (m. c. u.)
  5. Existe una frecuencia (f), que es el número de vueltas que da el cuerpo en un segundo. Su valor es el inverso del periodo

miércoles, 11 de marzo de 2015

Tiro Vertical

Identificar el movimiento vertical y aplicar el concepto de gravedad al movimiento ascendente.
 
En este tipo de movimiento la gravedad se considera negativa ya que se opone a él. Se utilizan las mismas formulas que en la caída libre.
 
 
EJEMPLO
1.- Una flecha es disparada verticalmente hacia arriba con una velocidad inicial de 40 m/s.
a) ¿Cuánto tiempo se elevará?
b) ¿Qué altura alcanzará?
d) ¿Cuál su posición vertical y su velocidad después de 2 s?
DATOS
FORMULA
SUSTITUCIÓN
RESULTADOS
t = ?
t= Vf -V0 / a=
0- 40 m/s / - 9.8 m/s^2
=4.0s
V0= 40m/s
d = V0t + gt^2 / 2=
40m/s(4s)+( -9.8m/s^2 )(4s)^2 / 2
= 81.6 m
g= 9.8m/s^2
Vf = gt+ V0
9.8m/s^2( 2s)+0
= 19.6 m/s
a) t = ?
d = V0t + gt^2 / 2=
40m/s(2s)+( -9.8m/s^2 )(2s)^2 / 2
=60.4 m
b) d = ?
c) d = ?
Vf= ?
Resultado de imagen para trayectoria de una flecha gif

Movimiento rectilíneo uniforme

Un movimiento es rectilíneo cuando un móvil describe una trayectoria recta, y es uniforme cuando su velocidad es constante en el tiempo, dado que su aceleración es nula.
 
 Es indicado mediante el acrónimo MRU, aunque en algunos países es MRC, que significa Movimiento Rectilíneo Constante.
  • Movimiento que se realiza sobre una línea recta.
  • Velocidad constante; implica magnitud y dirección constantes.
  • La magnitud de la velocidad recibe el nombre de celeridad o rapidez.
  • Aceleración nula.

Movimiento rectilíneo uniformemente acelerado

El movimiento rectilíneo uniformemente aceleradores un tipo de movimiento frecuente en la naturaleza.
 
Una bola que rueda por un plano inclinado o una piedra que cae en el vacío desde lo alto de un edificio son cuerpos que se mueven ganando velocidad con el tiempo de un modo aproximadamente uniforme; es decir, con una aceleración constante.

Este es el significado del movimiento uniformemente acelerado, el cual “en tiempos iguales, adquiere iguales incrementos de rapidez”.

En este tipo de movimiento sobre la partícula u objeto actúa una fuerza que puede ser externa o interna.

En este movimiento la velocidad es variable, nunca permanece constante; lo que si es constante es la aceleración.

Entenderemos como aceleración la variación de la velocidad con respecto al tiempo. Pudiendo ser este cambio en la magnitud (rapidez), en la dirección o en ambos.

Las variables que entran en juego (con sus respectivas unidades de medida) al estudiar este tipo de movimiento son:

Velocidad inicial           Vo (m/s)
Velocidad final              Vf  (m/s)
Aceleración                     a  (m/s2)
Tiempo                             t   (s)
Distancia                         d  (m)

Para efectuar  cálculos que permitan resolver problemas usaremos las siguientes fórmulas:

movimiento_R_acelerado007

Caida Libre



En física, se denomina caída libre al movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio.


Se conoce como caída libre cuando desde cierta altura un cuerpo se deja caer para permitir que la fuerza de gravedad actué sobre el, siendo su velocidad inicial cero.   
En este movimientos el desplazamiento es en una sola dirección que corresponde al eje vertical (eje "y").



Leyes fundamentales de la caída libre:

a) todo cuerpo que cae libremente tiene una trayectoria vertical.

b) la caída de los cuerpos es un movimiento uniformemente acelerado.

c) todos los cuerpos caen con la misma aceleración.
F'ÓRMULAS

 

 

Monografias.com
 
 Velocidad inicial: normalmente es la velocidad que se le imprime inicialmente a un objeto para  ponerlo en movimiento. En este caso como no se le da una fuerza sino solo se deja caer la Vo es igual a cero.
Velocidad final: es la velocidad que alcanzara el objeto cuando llega al punto final de la caída.
Tiempo: Es lo que se demora el cuerpo en caer.
Altura: la altura es la medida de longitud de una trayectoria o desplazamiento, siempre y cuando la medida se tomada como punto de referencia la vertical.
Gravedad: Gravedad es una fuerza que trata de jalar los objetos hacia a bajo. Cualquier cosa que tenga masa también tiene un tirón gravitacional. Entre más masa un objeto tenga, más fuerte es su tirón o jale de atracción gravitacional.
Ejemplo 1
Se deja caer una pelota desde la parte alta de un edificio, si tarda 3s en llegar al piso ¿Cuál es la altura del edificio? ¿Con qué velocidad se impacta contra el piso?
 
Monografias.com


Conclusiones
-La caída libre cuando desde cierta altura un cuerpo se deja caer para permitir que la fuerza de gravedad actué sobre el.
-La velocidad inicial es siempre cero.
-Todo cuerpo que cae libremente tiene una trayectoria vertical.
-La Gravedad es una fuerza que trata de jalar los objetos hacia abajo.
-En la caída libre no se toma en cuenta la resistencia al aire.